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Resum

En aquest treball es revisen diversos resultats recents sobre
la importància de la interacció espín-òrbita de Rashba per a
l’estructura electrònica i la conductància de cables quàntics.
Primerament es comenta com l’acoblament entre subbandes
donat per la interacció de Rashba és crucial per a les energies
de subbanda i les distribucions espacials d’espins, especialment
en presència de camps magnètics. A continuació considerem el
càlcul dels modes evanescents d’un cable quàntic, remarcant
les peculiaritats degudes a la interacció d’espín-òrbita. Final-
ment, considerem el cas d’una interacció de Rashba localitzada,
on fem la predicció de fortes ressonàncies de tipus Fano a la de-
pendència de la conductància amb l’energia de l’electró incident.
Aquestes ressonàncies s’observen més clarament a les trans-
missions de cada espín per separat. Trobem resultats numèrics
exactes amb l’algorisme de frontera transmissora quàntica i re-
sultats analítics amb un model simplificat de clara interpretació
física.

Abstract

We review recent work on the effects of the Rashba spin-orbit
interaction on the electronic structure and the conductance of
quantum wires. We first discuss the importance of the inter-
subband coupling induced by the Rashba interaction for the
wire subband-energies and spin distributions, especially in the
presence of in-plane magnetic fields. We then consider the cal-
culation of the evanescent modes, emphasizing the peculiarities
of these states in the presence of spin-orbit coupling. Finally, we
discuss the physical effects of a localized Rashba interaction
in a quantum wire. We predict in this case the occurrence of
Fano resonances in the dependence of the wire conductance
with the incident electron energy. The Fano lineshapes manifest
themselves more clearly in the spin-resolved transmissions. We
obtain exact numerical results within the quantum-transmitting-
boundary algorithm and also propose a simplified approach (the
coupled-channel model) that captures the main ingredients of
the effect and allows a more transparent physical interpretation.
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I. Introduction

When the two-dimensional (2D) electron gas lying at the inter-
face of a semiconductor hetero-structure is further confined
along one of the two directions, a quantum wire is formed. To-
day’s nanolithographic techniques can manufacture quantum
wires that have a high structural perfection and are largely free
from impurities. These nanostructures are therefore close to
ideal electron waveguides where propagation is allowed in one
direction (along the wire) while, in the other directions, con-
finement induces the quantization of the energy states. The
transverse quantization manifests itself in the formation of en-
ergy subbands occupied by electrons up to a maximum energy
for a given wire density [1,2].

Understanding the properties of electronic states in quantum
wires is a central issue in nanoscience. In the ballistic regime,
with low electronic densities, electron-electron interactions are
not very important, and wire conductance is determined by the
transmission of electrons as independent particles. This leads
to the celebrated conductance quantization in multiples of the
conductance quantum e2/h, as predicted by Landauer [3] and
measured in the narrow channels formed by quantum point
contacts [4, 5]. Deviations from a perfect staircase quantiza-
tion of the conductance can be due to various causes, such
as impurities, localized states and spin-orbit interactions. The
analysis of these deviations or ’anomalies’ has been drawing
much interest in nanoscience for many years [6–8].
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This paper reviews several recent studies [9–12] carried out
by our research group at the University of the Balearic Islands
on the properties of semiconductor quantum wires. The main
results and conclusions will be presented, but the reader is
directed to the published references, and references therein,
for additional details, discussions and bibliography. We shall
focus on the role of the Rashba spin-orbit interaction [13] on the
quantum wire properties. The Rashba interaction is a spin-orbit
coupling originating in the inversion asymmetry of the quantum
well in which the 2D electron gas in located. As a consequence
of this asymmetry, there is a local electric field perpendicular
to the quantum well plane that is responsible for the coupling
between the 2D linear momentum and the spin of the electron.
The effect is similar to the Pauli spin-orbit coupling in atomic
physics but with the important difference that, while in an atom
the electric field is that of the charged nucleus, here it is due to
the quantum well’s vertical asymmetry. Moreover, the intensity in
the Rashba interaction is renormalized – and is relatively much
more intense than in the atomic physics case– because effective
values stemming from the host semiconductor energy bands
are used [14].

Assuming a 2D electron gas lying in the xy plane, the
Rashba interaction is described by the Hamiltonian,

HR =
α

~
(pyσx − pxσy) , (1)

where ~p = (px, py) is the linear momentum and σx, σy are Pauli
matrices. Interest in the Rashba spin-orbit interaction is mainly
due to the fact that its intensity α can be tuned using external
electrical gating. An α variability range of 5 to 10 meV nm has
been demonstrated for InGaAs quantum wells in Ref. [15]. For
GaAs, the coupling strength is, typically, an order of magnitude
smaller because of the larger semiconductor band gap. The
control of α constitutes the basis of many applications and
devices in the emerging spintronics technology. Indeed, the
Rashba interaction provides a mechanism for the controlled ma-
nipulation of the electron spin in semiconductor nanostructures.
The spin transistor proposed by Datta and Das [16] is the most
famous instance of a spintronics device based on the Rashba
interaction. In this device, the electron transmission between
ferromagnetic contacts is manipulated by means of the spin
rotation induced by the Rashba interaction as the electrons
propagate in the channel connecting the two ferromagnets. In
addition to spin transistors, spin filters based on the Rashba in-
teraction as well as detectors of entangled electron pairs and of
hyperfine nuclear dynamics have also been proposed [17–19].

The electronic states in a wire are usually classified as prop-
agating or evanescent. While the former are physically realizable
throughout wire, the latter can only be found in restricted do-
mains, close to possible interfaces and inhomogeneities in the
system. Although the evanescent states cannot be seen in a
perfectly clean wire, finding their wavenumbers and their energy
subbands is very important because these aspects determine
the physics when any impurity or inhomogeneity is added to the
wire [20]. As we shall discuss, the presence of the spin-orbit
coupling makes the determination of evanescent states highly
non-trivial. An algorithm recently proposed in our group and a

specific application (a potential step in the wire) are discussed
below [12].

Since the Rashba intensity can be varied using external
electric fields induced by miniaturized electrodes, it is natural to
consider the possibility of non-homogeneous Rashba intensity,
when α becomes position-dependent. This situation has been
investigated in various geometries, such as a constant Rashba
strength in a semiplane, a stripe and a dot [21–24]. Here we
shall discuss the case of a Rashba dot that is traversed by a
quantum wire [10, 11]. Remarkably, the Rashba dot sustains
localized states that couple with the wire propagating states,
modifying the wire-conductance quantization with conspicuous
Fano resonances at specific energies. The two terms in Eq. (1)
are responsible for the formation of quasibound states in the
Rashba dot region and their coupling with the wire propagating
states. As we shall discuss below, the underlying physics is
nicely accounted for by the coupled-channel model (CCM).

The paper is organized as follows. Section II is devoted to
the case of a wire with extended spin-orbit coupling that is
uniform throughout the system. We first analyze the modifica-
tion of the propagating subbands and the associated spatial
spin textures in the presence of in-plane magnetic fields. Then,
we analyze the evanescent modes and a specific example of
application (namely, the potential step). Section III deals with
the localized spin-orbit coupling. Finally, Section IV presents our
conclusions.

Figure 1. Schematic representation of the wire potential V (y) =

mω2
0y

2/2 and magnetic field orientation considered in this work. From

Ref. 9, “Copyright (2005) by the American Physical Society".

II. Extended Rashba coupling

Let us assume that α takes a constant value for all points of the
xy plane and that the confinement is parabolic in the y direction,

V (y) =
1

2
mω2

0y
2 . (2)

The wire orientation, then, is along x. In addition, an in-plane
magnetic field ~B = (B cos θ,B sin θ) acts through the Zeeman
Hamiltonian (see Fig. 1)

HZ = gµBB(cos θσx + sin θσy)/2 . (3)
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Orbital magnetic effects are absent in this geometry since they
arise only from perpendicular fields. Adding all contributions, the
resulting Hamiltonian reads

H = (p2
x + p2

y)/2m+ V (y) +HZ +HR . (4)

In Eqs. (2,3,4), m and g represent, respectively, the effective
values for the mass and gyromagnetic ratio of the conduction-
band electrons in the host semiconductor. We shall take the
GaAs values g = −0.44 and m = 0.067me, with me the bare-
electron mass, for these parameters. We also stress that a
natural units system for parabolic wires is set by the transverse
oscillator. This amounts to measuring energies in units of ~ω0

and lengths in units of the oscillator length `0 =
p

~/mω0.
In the absence of HR, the transverse modes are pure oscil-

lator functions and the energy subbands are quadratic in the
wave-number k associated with px, the linear momentum along
the wire. The two terms in HR, Eq. (1) are usually named ac-
cording to the modifications made to this simplified scenario.
The term H(1)

R ≡ −αpxσy/~ is called the Rashba precession
(RP) term because it is diagonal in k and acts similarly to a
k-dependent magnetic field along y, forcing spin precession
for spins in arbitrary orientations. The second spin-orbit term
H(2)

R ≡ αpyσx/~ is the Rashba intersubband coupling (RIC),
with py connecting adjacent oscillator transverse modes and
σx inducing spin flip for spins along y, the RP term spin axis.

A. Relevance of RIC

For large wavenumber values the RP term obviously dominates
over RIC since it grows with k while the latter does not de-
pend explicitly on k. Importantly, when RIC is neglected, the
Schrödinger equation can be analytically solved. This analyt-
ical solution has motivated many studies in the literature. In
Ref. 9, our group proved that neglecting RIC is a delicate ap-
proach, which is not generally justified for low and intermediate
wavenumber values. This subsection reviews this result.

In the absence of RIC, the Schrödinger equation
HΨ(x, y, η) = EΨ(x, y, η), where η =↑, ↓ is the spin double-
valued variable, is analytically solved by the spinorial wavefunc-
tions

Ψ ≡ Ψnks = φn(y)
eikx

√
2

 
eiΩk/2

s e−iΩk/2

!
. (5)

In Eq. (5), φn(y) is the 1D oscillator wave function, solution of the
equation [p2

x/2m+ V (y)]φn = εnφn, with εn = (n− 1/2)~ω0,
n = 1, 2, . . . . As mentioned above k is the x wave number and
s = ±1 gives a spin branching number. The three quantum
numbers are therefore (nks). The angle Ωk, determining the
orientation of the spin in the xy plane, is the argument of the
complex number zk ≡ gµBBe

iθ/2+iαk. The two contributions
in zk stem from the Zeeman term and the spin-orbit coupling,
respectively. Notice that the Zeeman term tends to align the
spinor in the direction of the field, given by the angle θ, while
the Rashba coupling favors alignment along y. The analytical
eigenenergies are

E ≡ Enks = εn +
~2k2

2m
+ s|zk| . (6)

Figure 2. (a) Dispersion relation for θ = 0, gµBB = 0.25~ω0 and

α = 0.5~ω0`0. The solid line corresponds to the case where the RIC

is included, while the dashed line shows the case without it. (b) Same

as (a) for θ = π/2. From Ref. 9, “Copyright (2005) by the American

Physical Society."

When RIC is added to the above picture, the solution is,
in general, no longer analytical. It can be obtained numerically.
Figure 2 compares the energy subbands of the full Hamiltonian
(solid) with those in the absence of RIC (dashed) for a chosen
magnetic field oriented along θ = 0 (upper panel) and θ = π/2

(lower). Important modifications due to RIC are the transforma-
tion of the crossings around k`0 = 1 in anticrossings and the
reduction, or even disappearance in upper subbands, of the
local maxima at k = 0 (upper panel). Notice also that around
k = 0 there is a downwards shift due to repulsion with upper
subbands.

The modification of the energy subbands has important
consequences for the wire properties. RIC also causes modifi-
cations on the spin spatial distributions. While Eq. (5) had good
spin states, with spin oriented at an angle Ωk in the xy plane,
inclusion of RIC causes a spin texture, with a y-dependent dis-
tribution of non-parallel spins. Indeed, the existence of clear
spin textures is a signature of the RIC term. The local spin com-
ponents for the lowest subband at three different propagation
momenta are shown in the upper plots of Figure 3. While all
in-plane spins are essentially collinear, a sizeable z-component,



206 Contrib. Sci. 4 (2), 2008 Ll. Serra

similar in magnitude to the in-plane one, precludes the definition
of a common spin axis when k`0 6= 0 and thus shows the impor-
tance of RIC. The local z-magnetization in real space 〈σz(y)〉
is antisymmetric in y, which leads to a vanishing integrated
〈σz〉 [25] and gives rise to spin accumulations at the wire edges,
which are reminiscent of the intrinsic spin Hall effect [26]. Here,
however, the effect arises in a confined system [27].

Figure 3. Lower plot: Dependence on k of the spin expectation values

in the lowest subband. The solid lines are obtained when both Rashba

terms are included, while the dashed lines are the results when RIC is

neglected. We set gµBB = 0.2~ω0, α = 0.5~ω0`0 and θ = 0. The

upper panels display the spin texture for three selected propagation

momenta, taking into account both Rashba terms. The k`0 values (in-

dicated by the thick arrows pointing to the k-axis) are −0.75, 0 and

0.75 for the left, center and right upper plots, respectively. The vector

plot shows the in-plane spin and the continuous line corresponds to the

z-component. From Ref. 9, “Copyright (2005) by the American Physical

Society".

In Ref. 9, the linear conductance G as a function of energy
and Rashba intensity was analyzed. Figure 4 shows this result
for an orientation of the magnetic field of θ = 0. When RIC is not
included, G alternates, with increasing energy, steps of +2e2/h

with downward jumps of −e2/h due to the presence of maxima
in the lower subbands. When RIC is included, two major modifi-
cations are apparent: a) stronger Rashba couplings are needed
to observe the alternate steps of +2e2/h and −e2/h, and b) in
any case, this anomalous pattern of steps vanishes when the
Fermi energy increases. In particular, as shown by the insets,
when α = ~ω0`0, the sequence of conductance steps in units
of G0 is +2,−1,+1,+2,−1,+1, . . . when RIC is neglected and
+2,−1,+1,+1,+1, . . . when it is included. Therefore, Figure 4

proves that, in order to observe the modifications of the linear
conductance steps due to the Rashba interaction, it is essential
to have a relatively low Fermi energy or, equivalently, a rather
small number of propagating modes. Nevertheless, the stronger
the value of α, the higher the plateau containing anomalous
conductance variations.

Figure 4. Variation of the conductance with Rashba intensity and the

Fermi energy E in the full Rashba model (upper panel) and neglecting

RIC (lower panel). We set gµBB = 0.3~ω0 and parallel magnetic field

θ = 0. A rigid shift with Rashba intensity has been taken into account to

define Ẽ/~ω0 = E/~ω0 + 1
2
(α/~ω0`0)2. The numbers in the plateaus

give the conductance in units of the conductance quantum. On the

right, small plots show vertical cuts of the corresponding figures on the

left for the given values of α. G0 ≡ e2/h is the conductance quantum.

From Ref. 9, “Copyright (2005) by the American Physical Society".

B. Evanescent modes
The preceding subsection discussed the wire subbands asso-
ciated with the propagating modes, with real wave numbers k
in Eq. (5). When k is complex, the corresponding modes are
called evanescent because the imaginary part Im(k) gives an
exponential factor causing decay along the wire. Obviously, the
decay can be seen as a divergence for the reversed direction.
These modes are therefore not physically realizable in the entire
channel for x spanning the interval (−∞,+∞). Nevertheless,
they are extremely important because many physical states do
behave as evanescent in restricted domains.

In this subsection, we shall focus, for simplicity, on theB = 0

case. As in Eq. (5), the spinorial wavefunction is assumed to be
separable in the following form:

Ψ(x, y, η) ≡ φ(y, η)eikx . (7)

Let us now express the spin- and y-dependent part in terms of
the eigenspinors of σx, χx±(η), as

φ(y, η) ≡ φ1(y)χx+(η) + φ2(y)χx−(η) . (8)
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The Schrödinger equation (H − E)Ψ(x, y, η) = 0 can be
recast as a matrix equation for the amplitudes φ1,2(y), 

h0 − iα d
dy

+ ~2k2

2m
− E −iαk

iαk h0 + iα d
dy

+ ~2k2

2m
− E

!
×

(9)

×

 
φ1(y)

φ2(y)

!
= 0 ,

where we have defined the transverse oscillator operator

h0 ≡ −
~2

2m

d2

dy2
+

1

2
mω2

0y
2 . (10)

Figure 5. Mode dispersion for α = ~ω0`0. The branch labels indicate

mode number n as well as evanescent or propagating character as en

and pn, respectively. In the case of evanescent modes, superindexes

(r) and (i) indicate whether the branch gives the real or imaginary part

of the wavenumber. Open circles indicate the position of the thresh-

old energies E(th)
n where the e(i)n branches disappear while the e(r)

n

branches join with a propagating mode pn′ . From Ref. 12, “Copyright

(2007) by the American Physical Society".

Equation (9) determines the evanescent mode wave-
functions and wave-numbers. Although it has the formal ap-
pearance of a linear eigenvalue equation with eigenvalue E,
in our case the energy is given and the wavenumber k is un-
known. Notice also that, for complex k’s, the matrix in Eq. (9)
in non-Hermitian, which prevents the use of standard matrix
diagonalization routines. This invalidates the computational strat-
egy normally used for propagating modes, which consists in:
a) preassign a value to k; b) diagonalize (9); c) find a posteriori
what k’s give as eigenvalues the energy of interest E.

In Ref. 12 our group proposed an algorithm to solve Eq. (9)
and therefore determine the wire evanescent modes. The reader
is referred to that reference for the details of the method. Here,
we shall only briefly discuss some general properties of the
evanescent subbands. Figure 5 shows the mode dispersion for
a selected wire with strong Rashba coupling. We only plot posi-
tive wavenumbers, noting that, due to symmetry, signs of either
Re(k) or Im(k) can be inverted, giving a four-fold degeneracy

of each evanescent mode and a two-fold degeneracy of the
propagating ones.

Figure 6. Density ρ and spin magnetization (mx,my ,mz) distributions

in a wire with a potential step at x = 0 of V0 = 1.13~ω0 and having

α = ~ω0`0. The density contour numerical values are given in units of

`−2
0 while those of magnetization density are given in units of ~/(2`20).

Incidence is from the left in mode p1 shown in Figure 5, for an energy

E = 0.93~ω0 slightly below the threshold for propagating modes p3
and p4. From Ref. 12, “Copyright (2007) by the American Physical

Society".

Mode degeneracies can be explained by taking into ac-
count that if a solution to Eq. (9) is characterized by a given
wavenumber and amplitudes {k, φ1, φ2} then, by simply taking
the complex conjugate of Eq. (9), we find a solution having
{k∗, φ∗2, φ∗1}. Moreover, our starting Hamiltonian H is time re-
versal invariant, which, for a spin 1/2 system, implies that the
solutions must appear in degenerate pairs of time-reversed
states known as Kramers doublets. Using the time-reversal op-
erator for a spin 1/2 system, Θ = −iσyK, where K represents
complex conjugation, we find the Kramers partner of {k, φ1, φ2}
as {−k∗, φ∗2,−φ∗1}. In summary, with both complex conjuga-
tion (cc) and time-reversal symmetry, we obtain the four-fold
degeneracy

{k, φ1, φ2}
Θ
x?y

{−k∗, φ∗2,−φ∗1}

cc←→

cc←→

{k∗, φ∗2, φ∗1}
−Θ
x?y

{−k,−φ1, φ2} .
(11)

In Figure 5, the dispersion of the propagating modes pn

shows a familiar picture (discussed in the preceding subsec-
tion). There is a threshold energy E(th)

n for the activation of
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the n-th propagating mode. Due to the spin-orbit coupling,
when E slightly exceeds E(th)

n , propagating states with nonzero
wavenumber k(th)

n , belonging to the n-th mode, are allowed.
For E slightly below E

(th)
n , there is an evanescent mode whose

Im(k) approaches zero as E approaches E
(th)
n , as shown

by the e(i)n branches of Figure 5. The real parts Re(k) of the
evanescent wavenumbers, e(r)

n branches, display some oscilla-
tions and evolve from evanescent to propagating modes as E
crosses the threshold value E(th)

n .

Figure 7. Conductance for a Rashba dot of ` = `0 and α0 = 0.75~ω0`0

in the exact (solid), numerical CCM (dashed) and analytical CCM (dash-

dotted) calculations. The solid gray line shows the case without the

Rashba dot and the inset shows the physical system. From Ref. 11,

“Copyright (2007) by the Institute of Physics".

The interest in the evanescent modes lies in the fact that
knowledge of them allows the analysis of many different inho-
mogeneities. In Ref. 12, the case of a potential step V0Θ(x)

was presented as an illustrative example. Electrons incident
from the left (x < 0) impinge on the step border and, assum-
ing their energy is not enough to allow for propagation in the
right region (x > 0), only pure evanescent modes will be seen
for x > 0. At the step edge, the wave functions must match
adequately, as this condition determines the amplitudes of the
reflected propagating modes for x < 0 and of the evanescent
waves for all x. Figure 6 shows the density and spin magne-
tizations obtained after solving the linear system of equations
corresponding to the matching conditions. The spatial distribu-
tion of density and magnetization due to evanescent modes are
clearly seen for x > 0, while on the left side there are marked
interference effects between the coexisting modes. Focusing on
the evanescent mode side, there is a strong injection of spin y
magnetization my, clearly due to the fact that the incident mode
p1 is mostly polarized along +y (it is not completely polarized
due to the admixture induced by the RIC term). There is also
a significant accumulation of evanescent mx magnetization, of
different signs on either side of the wire. Had we considered
incidence from mode p2 at the same energy, the spin magneti-
zations would have been reverted with respect to those shown

in Figure 6, indicating that the average incidence from the two
modes p1 and p2 does not produce any net magnetization, not
even locally. On the contrary, the density shown in the upper
panel of Figure 6 is the same for incidence from either mode.

III. Localized Rashba coupling

In this section we analyze the case of a Rashba spin-orbit
coupling whose intensity is position-dependent α(r). For sim-
plicity, we shall consider the case of α(x) = α0 (constant) for
0 < x < ` and zero elsewhere. In this section, we also as-
sume that no magnetic field is present. The physical system
is, then, a parabolic quantum wire traversing a region of length
` with spin-orbit coupling, which we call the Rashba dot (see
inset in Figure 7). In order to retain good mathematical proper-
ties, the Hamiltonian is presently symmetrized with its Hermitian
conjugate (H.c.)

HR =
α(x)

2~
(pyσx − pxσy) + H.c. . (12)

We review the results of Refs. 10,11, which showed, with
numerical and analytical calculations, that the present geometry
leads naturally to the appearance of Fano resonance profiles in
the energy dependence of the conductance. The resonances
depend quite sensitively on the the Rashba dot’s properties,
such as its dimensions and SO intensity. We named this influ-
ence of the Rashba SO coupling on the wire conductance the
Fano-Rashba effect.

A. The Fano-Rashba effect
Fano resonances [28] are a general phenomenon that has been
observed in different fields, such as atomic physics [29], Ra-
man scattering [30] and mesoscopic electron transport [31].
Fano-resonance physics appears wherever there is interference
between two paths, one corresponding to direct transmission
and the other to the passage through a quasi-bound state lying
nearby in energy. As a consequence, characteristic asymmetric
lineshapes appear in the most general case, with conductance
dips in which transmission is greatly quenched. Indeed, for the
case of scattering centers that may be modeled as attractive
potentials it was shown that an exact transmission zero should
always be present [6,7]. In our case of a Rashba dot, the exis-
tence of transmission zeros is not always guaranteed. Only for
some specific dimensions and intensities of SO coupling does
the wire conductance vanish at the dip position.

Figure 7 shows a typical conductance curve for specific val-
ues of α and ` numerically obtained using finite differences in the
quantum-transmitting-boundary algorithm [10, 32]. The usual
staircase conductance is modified because of the Rashba dot
in two main aspects. First, the initial part of the step is smoothed
(a usual quantum behavior of scattering through potential wells).
Second, a pronounced conductance dip appears near the end
of the conductance plateau.

As mentioned above, the existence of conductance dips is
normally due to quasibound states. To prove it in the present
context, we show in Figure 8 the wave-function for two different
energies, Ea and Eb, where Ea is chosen to lie in the smooth
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conductance region while Eb corresponds precisely to the dip
position. Indeed, at energy Eb, the wave function strongly res-
onates within the Rashba dot and is so amplified that it greatly
exceeds the values in the leads. This explicitly shows the dra-
matic influence of the quasibound state. A systematic analysis
of the dip positions for varying α’s and `’s was performed in
Ref. 10. Figure 9 displays the variation of the linear conductance
when the Rashba intensity α and the length of the Rashba dot
` vary. Importantly, we observe dips going all the way down
to zero within numerical precision for specific values of these
parameters. In Figure 9(a), we show how, for a fixed value of
E, the resonances can be tuned by varying α, which may be
regarded as a gate voltage. This is a central prediction of Ref. 10
that can be tested experimentally.

Figure 8. Probability densities for the energies Ea (upper) and Eb (lower)

shown in Figure 7. Darker means higher probability. From Ref. 11,

“Copyright (2007) by the Institute of Physics".

B. The coupled-channel model (CCM)
The physics behind the results shown in the preceding sub-
section is more easily analyzed within the CCM. Assume the
following expansion of the electron wave-function Ψ(x, y, η),
in the transverse oscillator modes φn(y) and spin eigenstates
χ±(η) of σy,

Ψ(x, y, η) =
X

n,s=±

ψns(x)φn(y)χs(η) . (13)

Substituting Eq. (13) into the Schrödinger equation HΨ = EΨ

and projecting onto the functions φnχs, we obtain the CCM
equations for the various channel amplitudes ψns(x). We shall
restrict to the first conductance plateau, i.e., to electron ener-
gies fulfilling ε1 < E < ε2, and also truncate the expansion in
Eq. (13) to the first two transverse modes n = 1, 2. The selec-
tion rules stemming from the Rashba interaction require spin
flip and also ∆n = ±1. Therefore, we obtain two independent

two-band models, with ψ1+ coupled to ψ2− and ψ1− to ψ2+.
Actually, the two models are equivalent and we shall focus for
simplicity on the ψ1+–ψ2− system.

Figure 9. Linear conductance for energies close to the onset of the

second plateau ε2 = 1.5~ω0. (a) Conductance as a function of the

Rashba strength α̃ ≡ α/~ω0`0 for a fixed Fermi energy E = 1.45~ω0

and a fixed dot size ˜̀≡ `/`0 = 8. (b) Dependence of the conductance

with α̃ for a fixed dot size ˜̀= 8. (c) Conductance as a function of the

dot size for α̃ = 0.3. Dashed lines show the 1D bound state energies

relative to ε2. From Ref. 10, “Copyright (2006) by the American Physical

Society".

The CCM equations for the ψ1+, ψ2− amplitudes are greatly
simplified by means of the gauge transformation ψ1+,2− →
ψ1+,2− exp(±i

R x
kR(x′)dx′), where we have defined kR(x) =

mα(x)/~2. The resulting CCM system then reads»
p2

x

2m
− ~2k2

R

2m
− E + ε1

–
ψ1+ = V12ψ2− , (14)»

p2
x

2m
− ~2k2

R

2m
− E + ε2

–
ψ2− = V21ψ1+ . (15)

The left-hand sides of Eqs. (14) and (15) constitute the channel
background problems. They are 1D Schrödinger equations for a
potential well −~2kR(x)2/2m, the only difference being that the
energy is positive (negative) for ψ1+ (ψ2−). This clearly shows
the propagating and evanescent character of the two channels,
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respectively. The right-hand sides contain the channel couplings,
with the mixing potentials

V12(x) = V ∗
21(x) =

i

~
〈φ1|py|φ2〉α(x)e2i

R x kR(x′)dx′
. (16)

Figure 10. Channel probability densities within CCM, defined as

ρns(x) = |ψns(x)|2, for the energy Eb of Figure 7. The probability den-

sity corresponding to the background bound state ρ0(x) = |φ0(x)|2

is also shown. ρ0(x) has been arbitrarily rescaled in order to repro-

duce the peak height of ρ2−(x) for better comparison. From Ref. 11,

“Copyright (2007) by the Institute of Physics".

The dashed line in Figure 7 shows the conductance from
the full solution of Eqs. (14) and (15), obtained numerically.
Clearly, the existence of the conductance dip is well repro-
duced by the CCM. However, a more transparent physical
interpretation is obtained with an ansatz solution. Indeed, the
evanescent character of ψ2− in Eq. (15) motivates the ansatz
ψ2−(x) ∝ φ0(x), where φ0 is the background bound state ful-
filling

`
p2

x/2m− ~2k2
R/2m− ε0

´
φ0 = 0, with ε0 < 0. Since

E > ε1, Eq. (14) describes a 1D scattering process with a
source term given by V12ψ2− and asymptotic wave vector
k =

p
2m(E − ε1)/~2. Using Green’s function G, given in

terms of the background asymptotic states ϕr and ϕl behaving
as te±ikx for x→ ±∞, respectively, we find the total transmis-
sion

T+(E) = |t|2 (E − ε2 − ε0 −∆ + δ)2 + (γ − Γ)2

(E − ε2 − ε0 −∆)2 + Γ2

≡ |t|2 |ε+ q|2

ε2 + 1
, (17)

where we have defined

∆ + iΓ ≡ 〈φ0|V21GV12|φ0〉 , (18)

δ + iγ ≡ m

i~2kt
〈ϕ∗l |V12|φ0〉〈φ0|V21|ϕr〉 . (19)

The last expression in Eq. (17) emphasizes the generalized Fano
lineshape, with ε = (E−ε2−ε0−∆)/Γ and q = δ/Γ+i(γ/Γ−1).
In general, the Rashba dot yields complex q’s. Therefore, the
factor |ε + q| in Eq. (17) cannot vanish at any ε, or equiva-
lently any E, thus hindering the formation of zero-transmission
dips. For some particular values of α and `, however, we have

shown above that there are accidental cases where the con-
ductance dip is compatible with a zero value within numerical
precision [10]. As shown by the dash-dotted line of Figure 7,
the ansatz solution satisfactorily reproduces the conductance
dip although, of course, there are some minor discrepancies
with the exact solution (solid line).

As mentioned above, the exact solution of the CCM equa-
tions can be obtained numerically, using a 1D formulation of the
quantum-transmitting-boundary algorithm. This allows a check
on the validity of the ansatz ψ2−(x) ∝ φ0(x). Figure 10 shows
the different channel amplitudes (including the ψ3+ channel), as
well as the bound state φ0, for the dip energy Eb of Figure 7.
The probability density for channel ψ1+ does not vanish for
x → ∞, thus proving the propagating nature of this channel,
although transmission is rather low at this energy. There is good
qualitative agreement of the probability densities ρ2− and ρ0,
which explicitly proves that the ansatz is indeed a reasonable
assumption for the evanescent channels. The numerical solu-
tion was obtained by also including channel ψ3+. However, the
smallness of ρ3+ with respect to the other channel densities
supports the truncation to the lowest two modes.

Figure 11. Spin dependent transmissions for α = 0.3~ω0`0 and

` = 9.5`0 when the spin quantization rotates from y (θ = π/2) to

x (θ = 0). The total transmission T =
P

s,s′ Ts,s′ is the same in

all cases. From Ref. 10, “Copyright (2006) by the American Physical

Society".

Thus far, we have taken the spin quantization axis along
y, for which both spin channels are equivalent and uncoupled,
i.e., T+ = T−, and there is no spin flip. This is not true along
other orientations and, generally, one must consider the four
contributions to the total transmission T =

P
s,s′ Ts,s′ , where

s denotes the spin state in the left lead (incident) and s′ that
of the right lead (transmitted). Obviously, for the present case,
where the absence of magnetic fields preserves spin rotational
invariance, T does not depend on the chosen quantization axis.
Furthermore, due to time reversal symmetry, we always have
T++ = T−− and T+− = T−+ [33]. In Figure 11, we show the
spin-resolved transmissions when the spin axis is rotated on
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the plane from θ = π/2 (y-axis) down to 0 (x-axis). Quite re-
markably, Ts,s and Ts,−s develop conspicuous Fano lineshapes
with exact transmission zeros for Ts,−s as θ decreases, even
for cases in which the total transmission has a vanishingly small
dip. Therefore, experiments using ferromagnetic leads with tilted
spin orientation would greatly enhance the Fano lineshapes.

We end this section by mentioning two lines in which our
group is currently extending the research on local Rashba cou-
plings. One considers magnetic fields and how they influence
the Fano-Rashba effect mentioned above. In particular, we are
analyzing the interplay of the Zeeman gap with the local Rashba
coupling due to an in-plane magnetic field [34]. Another line
of research deals with the effects due to electron-electron in-
teraction. In this respect, we have already proved that a local
Rashba dot can, in the appropriate range of parameters, display
pure interaction effects such as Coulomb blockade and Kondo
correlations, manifested as current oscillations [35].

IV. Conclusions

We reviewed several recent studies carried out at the University
of the Balearic Islands to analyze the spectrum, magnetization
distributions and linear transport of ballistic quantum wires in
the presence of extended Rashba interaction and in-plane mag-
netic fields. The crucial importance of RIC for these properties
was stressed. At strong spin-orbit coupling, the modifications in
the energy subbands include the appearance of sizeable shifts,
anticrossings and large reductions on the subband maxima.
The changes in subband structure lead to precise predictions
for measurements of the linear transport properties, such as a
severe reduction on the anomalous conductance steps when
θ = 0 and a nontrivial dependence of the steps on the Rashba
intensity.

Besides the abovementioned propagating states, we also
considered the wire’s evanescent modes, characterized by com-
plex wavenumbers with both real and imaginary parts. Due to
symmetry, one can invert the signs of either Re(k) or Im(k), or
both, and still obtain physically valid wavenumbers. Typically,
when energy is decreased the wire modes evolve from propa-
gating to evanescent as the energy crosses a threshold value.
Re(k) displays a continuous evolution while Im(k) is suddenly
switched on for energies below the threshold. The evanescent
modes allow the investigation of spin and density distributions
around inhomogeneities and at interfaces in quantum wires with
extended spin-orbit coupling, a condition met in many spintronic
devices.

We also reviewed recent work on the influence of a localized
Rashba scattering center (Rashba dot) on the linear conduc-
tance of a quantum wire. The Rashba dot sustains quasi-bound
states that interfere with direct transmission along the wire and
lead to Fano-resonance profiles in the energy dependence of
the linear conductance. This Fano-Rashba effect was elucidated
with numerical calculations using a grid discretization of the 2D
Schrödinger equation and a coupled-channel model that allows
a more transparent physical interpretation. This model yields
analytical expressions within the ansatz approach that clearly

show the appearance of the Fano function for the transmission.
The validity of the ansatz solution and the truncation to the low-
est two modes was assessed by finding the numerical solution
of the multimode coupled-channel-model equations. Finally, we
stressed that the conductance modulations obtained by varying
the intensity of the local Rashba coupling seem promising as
candidates for device operation in spintronics.
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